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The form of the Boltzmann equation presently being used to describe phenomena 
dependent upon the internal angular momentum states of molecules in the gas phase 
is inconsistent in that angular momentum is not conserved. Thus, the internal angular 
momentum relaxation is correctly described by this equation but the resulting produc- 
tion of angular momentum in the translational degrees of freedom just does not appear 
at all. This work is aimed at extending the Boltzrnann equation to give a consistent 
description of all conserved quantities. It is shown that this is not a trivial matter and 
that some truncation of an expansion in position gradients is required. The simplest 
choice is discussed. In the development, a central role is played by sum rules which 
arise from the assumed localized nature of the intermolecular potential. 

KEY W O R D S :  Boltzmann equation; conservation laws; nuclear magnetic relaxation; 
gaseous state;Wigner distribution function; density matrix; transport phenomena; 
angular momentum. 

1. I N T R O D U C T I O N  

F o r  s imple fluids, the equat ions  o f  change for  the var ious  h y d r o d y n a m i c  densities, 
such as mass,  momen tum,  and  energy, can be readi ly  derived f rom the Bol tzmann  
equat ion.  However ,  compl ica t ions  arise i f  the molecules  o f  the fluid possess in ternal  
angular  momen tum.  F o r  such a system, i t  is poss ible  to define a local  in ternal  angu la r  
m o m e n t u m  density s(r, t). The equa t ion  o f  change o f  s(r, t) and  the result ing irrever- 
sible the rmodynamics  of  such a system have been discussed by  several authors .  In  
par t icular ,  Curt iss  ~1) developed a kinetic  theory  for  a di lute  gas o f  r igid nonspher ica l  
molecules  in which, because o f  the local ized na ture  o f  the coll is ion opera to r ,  no  
coupl ing between internal  angular  m o m e n t u m  and  the angular  m o m e n t u m  of  fluid 
flow occurs.  On  the other  hand,  the s t andard  text  by  De  G r o o t  and  M a z u r  (2) on 
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irreversible thermodynamics discusses the coupling of internal and fluid-flow angular 
momentum but ignores the possibility of internal angular momentum flux. The earlier 
articles by Grad 13) do, in fact, consider a general statistical-mechanical formulation 
for both the internal angular momentum flux and the coupling between internal and 
fluid-flow angular momentum. Quite recently, Snider and Lewchuk ~4) have discussed 
quite generally the equations of motion and the irreversible thermodynamics of a one- 
component fluid whose molecules possess internal angular momentum. In the absence 
of any external force or torque, their equation of change for the internal angular 
momentum density (or spin density, if spin states are involved) is 

/ D \ 

t - N s ( r ,  t ))  = - - V .  L - -  2Po (1) P 

where p is the fluid density, L is the conductive spin flux tensor, and pa is the pseudo- 
vector equivalent to the antisymmetric part of the pressure tensor P, namely 
P~ = ---.}E : P. Here, e is the completely antisymmetric, isotropic third-rank tensor, c51 
Finally, D/Dt is the substantial time derivative 

D/Dt ~ 8/8t § %. V (2) 

Equation (1) shows that, in general, there is a spin-relaxation term arising from the 
antisylm'netric part of the pressure tensor. 

To obtain the correct equation of change for the internal angular momentum, it 
is necessary, then, to utilize a Boltzmann equation which can have a nonsymmetric 
pressure tensor. Moreover, as the internal degrees of freedom (such as spin or rotation) 
must be treated quantum-mechanically at ordinary temperatures, it is necessary to 
use a quantum-mechanical Boltzmann equation. For such a system, the appropriate 
function to describe the fluid consists of a set of one-particle Wigner distribution 
functions, one for each of the terms in a matrix of internal states, i.e., a Wigner- 
distribution-function density matrix f(r, p, t) which is a distribution function in 
position-momentum space and a density operator ("matrix") in internal-state space. 
Since the internal states are degenerate (e.g., spin or rotation), it is necessary to use 
the full density-matrix formalism for these states. A quantum-mechanical Boltzmann 
equation which is appropriate for describing degenerate internal states has been 
derived by Waldmann ~n~ and independently by Snider3 r) Unfortunately, the pressure 
tensor as derived from this Waldmann-Snider (W-S) equation is symmetric (see, e.g., 
McCourt~8)). To obtain the correct equation of change for the spin density, Hess and 
Waldmann ~9) phenomenologically added an appropriate term containing the vorticity 
to this equation so that the Barnett effect is correctly described. Again by pheno- 
menology, they identify the antisymmetric part of the pressure tensor from this spin 
equation and add this to the kinetic pressure tensor obtained from the W-S equation 
In a later paper, Hess u~ also obtains a spin relaxation from a generalized Boltzmann 
equation having a nonlocal collision term. This is identified by making a moment 
expansion off(r ,  % t) about total equilibrium (uniform gas). It should be mentioned 
that Grad ~8~ had previously noted that the antisymmetric part of the pressure tensor 
arises only from collisional momentum transfer and thus appears as a dense-gas 
correction to the hydrodynamic equations. 
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The present paper begins with a nonlocal collision term, here called the gene- 
ralized Boltzmann equation (Section 2), while approximate localizations of the colli- 
sion term are considered in Section 3. This involves position-gradient contributions 
to the collision term. In particular, the linearly extended W-S equation has the usual 
W-S collision term plus two corrections each linear in position gradients. These latter 
terms reduce in special cases to the corrections of Hoffmann et aL (~a) and to the terms 
in the Boltzmann-Landau equation recently derived by Baerwinkel and Grossmann. (12) 
The contributions of  the correction terms to the fluxes and productions of mass, 
linear momentum, energy, and internal angular momentum are discussed in Section 4. 
It is found that neither the W-S equation nor the linearly extended W-S equation 
gives a consistent set of  equations of change for these quantities, in the sense that they 
are not in agreement with the equations of fluid dynamics. In the discussion (Section 5), 
a suggestion is made for choosing an extended W-S equation which is consistent with 
fluid dynamics, namely to keep one of the two linear-in-gradients corrections, but not 
the other. A gas obeying this latter equation is not ideal, that is, the gas has a second 
virial coefficient. 

2. GENERALIZED B O L T Z M A N N  E G I U A T I O N  
A N D  T H E  L O C A L I T Y  SUM RULE 

For completeness, the fundamental equations used in deriving the usual W-S 
equation are repeated here. For a system of N identical particles (Boltzmann statistics 
will be used) the yon Neumann equation can be written as 

ih ~p/St = LtU~p (N) (3) 

where p(N)(1, 2,.., N) is the N-particle density operator normalized to N! and L (s) is 
the N-particle superoperator "commutator of  H (u) with." The Hamiltonian H iN) is 
taken to be 

N 

H(N) = Z H<I)(i) + �89 ~ V~j (4) 
i= i  i # j  

where H(a)(i) is the one-particle Hamiltonian acting on the ith particle and Vi~ is the 
short-range potential reponsible for collision between the ith and.jth particles. Since 
the particles are identical, reduced density operators p(M)(1, 2,..., M) can be defined 
in M-particle space (M < N). The first BBGKY equation can then be written (for 
particle 1) as 

ih ep(1)/~t - -  [H(1)(1), p(1)(1)]_ = Tr(e)[V{1, 2}, p(~(1, 2)]_ (5) 

with normalization Tr(~)p(a)(1) = N, Tr(1.~)p(~)(1, 2) = N ( N - -  1). The hierarchy is 
then truncated by choosing the two-particle density operator to be a functional of  the 
one-particle density operators. Snider (7) has shown that, for a short-range potential 
and a dilute gas, a reasonable choice for the two-particle density operator is 

p(l, 2) = ~Q(1, 2) p(1)(1) p(z)(2) Q*(1, 2) (6) 
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where p(1} is the single-particle density operator and s is the Moeller wave 
operator, which transforms free-particle states into scattering states. It can be formally 
defined as the strong operator limit 

s = lim exp[ig(~)(1, 2)t] exp[--iK(1, 2)t] (7) 

where H(2~(1, 2) is the total two-particle Hamiltonian (including the interaction 
potential) and K(1, 2) = Hm(1) -[- Hal(2) is the "free-particle" Hamiltonian for two 
particles. Further, g2*(1, 2) is the adjoint of g2(1, 2). Finally, Eq. (6) is substituted into 
Eq, (5) to give the generalized Boltzmann equation for the singlet density operator 
pIl~(1) for particle 1, 

ih 8p(ll(1)/St - -  [Hm(1), p(1)(1)]_ = Tr(z)[V(1, 2), s 0(1)(1) 0(1)(2) f2*(1, 2)]_ (8) 

Equation (8) is identical to Eq. (23) of Ref. 6 and is the starting point for the 
derivation of the usual W-S equation. The basic difference is that the collision term, 
right-hand side, of Eq. (8) is nonlocal, while the W-S collision term is localized and 
more conveniently expressed in terms of the Wigner distribution function. Equation 
(8) can also be expressed in terms of the corresponding Wigner distribution function 
by making a Weyl correspondence between p(z) and f(r ,  p, t), namely 

f ( r ,  p, t) = (l/h) a f exp(iq - r/h) (p q- lq [ pro] p _ �89 dq (9) 

In this, only the translational motion is transformed, while the internal-state opera- 
tors remain operators. Thus, f(r ,  p, t) is a function in phase space but simultaneously 
an operator in internal-state space. The inverse transform to Eq. (9) also exists, so 
that the resulting equation is entirely equivalent to the generalized Boltzmann equa- 
tion, Eq. (8) [since the result is algebraically complicated, it was found that Baerwinkel 
and Grossmann's (1~ notation is somewhat more convenient for expressing the 
result]: 

_~@ p 8 f +  i 
~-" 8~ g [Hint , f ] -  = J(r, p, t) (10) 

where it has been assumed that 

H m = + Hint (11) 
2m 

and the internal-state Hamiltonian Hint is, for simplicity, position- and momentum- 
independent. The collision term is written as ~ 

- 2 6 i  -2i �9 y)] 3(~qkx)f l  (r + ~ @ ,  p + tS k) d(r, p) ~ (~)3 tr~ f exp [ - T - ( •  �9 x - q  

) 2 , p ~ -  f ~ - k  d k d x d f 3 d q d y d x  (12) 

tr2 designates a trace over the internal states of the second particle--this is to be contrasted with 
Try, which is a trace over all states, translational and internal, as, for example, in Eq. (5). The 
subscripts 1 and 2 on fare retained to designate which internal states occur with +k and q-x and 
vice versa. 
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where the superoperator (operator on operators) .~(13qkx) is defined by 

~(13qkx)fl (r + Y - - x  ) ( ) 2 p +  13- -k  f2 r +  y + x  - - ,  ~ , p +  1 3 + k  

= < 1 3 + q l V ~ Q [ k + •  Y--X2 , p + 1 3 - - k )  

y §  ) 
2 , p +  1 3 + k  ( k - - x [ f 2  +1 13- -@ 

- - < 1 3 + q [ O [ k + •  Y--X2 , p ~ - 1 3 - - k '  ) 

•  (r + y + x  ) ~ , p +  1 3 + k  < k - - x l Q * g l  13- -q)  (13) 

The position vector x plays the role of the distance between the particles when they 
collide, the nonlocality of the collision, while (�89 is the difference between the center 
of mass of the colliding pair and the position of one of the particles; 13 is the relative 
momentum of the colliding pair after collision, while k is the average relative momen- 
tum before the collision [average in the sense that a matrix element (p [ A [ p') of an 
operator A has two momenta p and p' and it is the average �89 + p') of these]; q is a 
measure of the off-diagonality in total momentum of the pair density matrix (before 
collision); and x measures the relative contribution to this from the two different 
particles. It should also be noted that, since V and g2 are independent of the center-of- 
mass motion, the center-of-mass momenta do not appear in the matrix elements for 
these quantities. Lastly, if spin particles are being dealt with, Hint ~ 0 and K refers 
to translational kinetic energy only. In this case, use of  the intertwining relation 

(K + V) I2 : f2K (14) 

allows ~(13qk• to be written as 

.~(13qk• (r + Y  - - x  ) ( ) 2 p +  [ ~ - - k  f~ r +  y + x  , ~ - ~ - ~ , p - [ -  1 3 + k  

= 2 (_13. q + k -  ~) (13 + q [ C2 { k + x ) f~A(k  -- x I ~Q* [ 13 -- q) (15) 

withflf2 having the same argument as the line above. Except for the requirement that 
g2 and f are still operators and their order must therefore be preserved, the form of 
Eq. (15) is identical to that given by Baerwinkel and Grossmann. (12) The superopera- 
tot  ~(13qk• can be thought of as a superoperator parameterized by the four vectors 
13, q, k, x which can act on any operator in the internal-state space of a pair of par- 
ticles, 

~(13qkx) A ~ (13 + q I VQ r k + x) A(k -- • ] ~* I 13 - q) 

-- <13 + q ] ~ I k + • A(k -- x I (2iV] 13 -- q) (16) 

Some properties of  the superoperator ~ will now be discussed. On the assumption 

822/2/1-5 
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that the transition operator t ~- VI2 is bounded and that A is of trace class, then `3(A) 
is also of trace class. Since a scalar product 4 

(B, A) ~ tr B*A (17) 

between bounded operators B E ~ and trace-class (nuclear) operators A E 9l can be 
defined, a matrix element of ~ between these spaces reads 

(B, .~A) ~ tr B*~A = tr(.3*B)* A = (.3*B, A) (18) 

and 3 '  is the superoperator adjoint to .3. By direct calculation, .~* is given by 

~ ( [ 3 q k x ) * B =  ( k + x l Q * V i ~ + q )  B(I 3 - q l # 2 1 k - x )  

--  (k  + x I ~* I t3 § q> B<I3 - q I v~2 i k --  x )  (19) 

since 

([~ + ql f21k + x)* = <k + x [ f2* [ ~ + q) (19') 

Zh = h F  (20) 

From this, it immediately follows that 

#2* Vhf2 - -  f2th Vf2 ---- 0 (21) 

which can be expressed in matrix form for momentum space (still operators in internal- 
state space) as 

0 = (k + x Is --  f2thV#2 ] k -- x) 

f (k + x I #2*VI p)(p I h 1P')(P' I #2 [ k -- x) dp dp' 

f <k + x ] ~Q* ] p) (p  [ h I P')<P' [ #2 [ k --  x )  dp dp' (22) 

Now, for the special case that 

h(r) = exp(2iq �9 r/h) (23) 

it follows that 
(p I h j p') = 8(p' --  p + 2q) (24) 

The superscript * denotes adjoint in internal-state space, in contrast to the full adjoint t in translation 
and internal-state space. 

and similarly for Vs 
A basic property of `3, and one which plays an important role in the hydro- 

dynamic equations of change, arises from the local nature of the intermolecular 
potential V. Thus, if V is assumed to be independent of the linear momenta of the 
molecules, any operator h(r) dependent only on the relative position will commute 
with V (h is the identity in internal state space), thus 
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and 

[ ( k + x l g 2 t V t p ) ( p - - 2 q i g 2 1 k - - x )  

--(k+x]g2*Fp)(p--2ql  V O l k - - x ) ] d p : 0  (25) 

For p replaced by 13 - / q ,  this can be interpreted as 

f .~(13qkx)*l d[3 = 0 (26) 

This relation is hereafter referred to as the locality sum rule. In fact, it is a three- 
parameter set of sum rules, labeled by q, k, and x. In particular, if q = 0, the integral 
over p (or [~) can be performed and a trivial identity obtained. This special case is a 
generalization of the optical theorem as follows: 

Defining the free-particle Green's function by 

1 
G(E)  ~ lira E - -  K + i~ (27) 

the Lippmann-Schwinger integral equation reads 

s 1 + G V O :  1 + Gt  (28) 

with the understanding that E is the eigenvalue of K on which ~2 acts. To indicate this 
more explicitly, Eq. (28) is rewritten as 

O IE)  = [1 + G(E)  t][ E) (28') 

where I E)  is a ket whose eigenvalue o fKis  E. Then the trivial identity ~2*Vg2 = g2* V~2 
[this is Eq. (25) with q = 0] becomes 

( E '  i t*D - -  g2*t l E )  = (E ' [  t* - -  t + t*[G(E) - -  G*(E')] t l E )  (29) 

On the energy shell, E' = E, the identity 

G*(E) - -  G(E)  - :  2rci 3 (E  - -  K )  (30) 

is applicable, and the optical theorem 

t + - -  t = 27tit* ~(E - -  K )  t (31) 

follows. Thus, Eq. (26) is the optical theorem for q = • = 0 if Hi~, = 0 or at least 
when q = 0 and k and x are related to the internal-state energies in such a manner 
that .~(~0kx)* 1 is diagonal in "K-energy." 

An easy calculation shows that 

(.~(13qkx) A)* = --~(1~, --q, k, --x) A* (32) 

and this immediately implies that Y is Hermitian, namely 

J+(r, p) = S(r, p) (33) 
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on the basis that p is Hermitian and hence f* = f. Lastly, since the collisions involve 
two particles, there is the permutation symmetry of .3 to investigate. This changes the 
sign of any relative coordinate so that the symmetry 

-3(I3qk x) = Pint ~(--[~, --q, --k, --*) Pint (34) 

is obtained. Here, Pint is the permutation operator on the two particles acting in 
internal-state space only. 

3. L O C A L I Z A T I O N  OF T H E  C O L L I S I O N  TERH 

3.1. The Waldmann-Snider Equation 

The basic difference between the generalized Boltzmann equation, Eqs. (10), (12), 
and (13), and the usual Boltzmann equation is, besides the more complicated handling 
of the internal states, the nonlocality of the collision integral. As explicitly displayed 
in Eq. (12), the two f ' s  are evaluated at different positions. On the basis that f is  only 
macroscopically position-dependent it was assumed in Ref. 6 that both the y and x 
dependences could be dropped since these will contribute to the integral only over a 
distance of the magnitude of the range of the potential. If this is valid, then the x and 
y integrals can be performed in Eq. (12) and the Waldmann-Snider collision term is 
obtained, namely 

J(r, p) -~ Jo(r, p) 

tr2 f .~(~, O, k, O)f~(r, p + 13 -- k)f2(r, p + 13 + k) dk d13 ~ 6 4 i ~  ~ 

p ,O' ) 
• f~(r, pl')A(r, p -~- P2 -- Pl') alP1' alP2 

=(27r )4h2 t r2 f [ (  p ~ - p 2  [t[P~-P22 Pl'> 

• f~(r, Pl )f~(,  P -}- P2 -- Px') 2 Pl' I S(E)[ dp~' 

-~- ~-~ 1 I<-P2 -- P ) -  It]  P ~ -  P > . f f_  i f (  P 2 -  P 2  2 ,It*l P 2 -  P >I] d P 2 2  (35) 

In the last form, f must be diagonal in internal-state energy and J(r, p) must also be 
restricted to being diagonal in internal energy. The 8(E) designates that the "K- 
energy" offfmust  the same as the "K-energy" of tffF, whileffis short for 

f,(r, p)f~(r, P2). 

For diagonal f, this reduces in the standard way to the Wang Chang-Uhlenbeck a~) 
equation with degeneracy averaged cross sections and, if no internal states are present, 
to the usual Boltzmann equation with a quantum-mechanical cross section. 
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For internal states with angular momenta, this approximate localization of the 
collision term does not give a consistent picture of angular momentum conservation. 
That is, the W-S equation predicts an internal angular momentum relaxation but no 
corresponding production of translational angular momentum (r • p), since the 
collision is localized and p is a summational invariant. Equivalently, the formal 
expression for the pressure tensor that is obtained from the W-S equation consists of 
a kinetic contribution only and this is necessarily symmetric. A localization which 
would be consistent must take into account some of the nonlocalizability of the colli- 
sion term, but what is attempted here is to use as little as possible. The starting point 
for making these corrections is to expandff in  a power series about the position r. This 
gives various extensions of the W-S equation. 

3.2. Linearly Extended W-S Equation 

On expanding f about r, the linearly extended W-S equation is defined as that 
extension which keeps at most linear gradients i n f  Thus, in Eq. (12),ffis replaced by 

Afz ---~A_.-fz+ + �89 V(fLf2+) + �89 " ( f  l_ Vfz+ --A+ Vfa_) (36) 

where 

f•  ~ f(r ,  p + ~ ~ k )  (37) 

designates the momentum variable, while subscripts 1 and 2 refer to which of the 
molecule's internal states are involved. The collision term J can now be written as a 
sum of three contributions: the W-S collision term J0, Eq. (35), and two extra terms 
Jn  and J~2 arising from the two correction terms in Eq. (36). On integrating over x, 
y, q, and ~, these terms become 

and 

Jn(r, p) = V �9 2h 3 trz f V~-~(13qkO)lq=of~_f2+ dk d~ (38) 

2h a x dk d[3 (39) Jl~(r, p) = tr~ f V~za(~0k )]~=0 " [f~+ Vf~_ --f~_ VJ~+] 

The hydrodynamic equations of change are derived from this extended W-S equation 

~f _}_ p Of + i [Hin, , f ]_  = J0 + Jr, -+- J12 (4o) 

in the next section and it is shown there that this equation is also not consistent in 
treating angular momentum conservation. However, if only the correction Jn  is 
included but not the Ji2, this does give a consistent equation for linear and angular 
momentum conservation. 
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4. H Y D R O D Y N A H I C  E Q U A T I O N S  

The expectation of any one-particle operator r is determined entirely by the 
singlet density matrix, thus 

Trl #,1, trl r' = = f f  r p)A( , p) dp dr' (40 

where q~(r', p) is the phase function (still an operator in internal states) related to ~ by 
the Weyl correspondence. In particular, if ~b is a density operator (quantity of some- 
thing per particle), then dp'(r', p) is proportional to the delta function 3(r' -- r), that is, 
r p) = 3(r' -- r) q~(r, p), where r is the position at which the density is desired 
to be known. If r  is the average of r per unit mass, then 

p(r)q~(r) = tri f el(r, p)fl(r, p) dp (42) 

with p(r) being the mass density of the gas (p is to be contrasted with the singlet 
density matrix pro). From the Boltzmann equation, the equation of change for r 
becomes (r is assumed time-independent) 

D ~  i 
P---Di - +  v . a c g + ~ t r i  f [r dp_<_~_, ar > 

\ ~t ]colJ 

= a0(pr ) -~- aii(P~ ) q- 81~(p(/) ) (43) 

where the last form denotes the three contributions to the collision term in the linearly 
extended W-S equation and JeK is the kinetic contribution ([(p/m) -- v0] q~} to the 
flux of r 

The equation of continuity 

ap/at + V �9 (pro) = 0 (44) 

has already been used in writing Eq. (43), but this is easily proved for the generalized 
Boltzmann equation, Eq. (12), since 

(~ )eo l l  : trl fJ (r ,p)  dp ~- f O, J(r, p)) ap 

(--i)(2) ~ (2] a 2 'P+k)) 

2i y)] dk dx dq dy dx d[~ dp 0 (45) • exp[ - -~- ,  ( x . x - - q -  = 

by the sum rule, Eq. (26). Note that it was possible to eliminate ~ from f f  by 
translating p. 
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4.1. L inear  M o m e n t u m  Conservat ion  

C~o(pVo) can easily be shown to vanish (see the appendix) and thus the W-S equa- 
tion is consistent with momentum conservation. The correction terms J n  + Jlz are 
also consistent with momentum conservation and their contribution to the momentum 
equation is now obtained. For ~(r, p) = p, q~ = %, the momentum equation is 

Dvo 
p- - -~ -{ -  V " PK = Oll(Pu ~Z2(pV0) 

with 

(46) 

On(pVo) = - - V - P v  (47) 

where Pv is the collisional transfer contribution to the pressure tensor 

Pv ---= --2h3 trz tr2 f Vq-~(13qk0)[,=0fa_f~+p dk d[3 dp 

---= 2h 3 tq  tr 2 f Vq.~(13qk0)lq=0f~(r, p -- k)f2(r, p + k) ~d~ dk dp (48) 

A translation of p by ~ has been made and then part of the term eliminated by the 
sum rule, Eq. (26). In general, this contribution to the pressure tensor can be non- 
symmetric; however, if there is no internal structure in fact, just no vectorial internal 
structure--then Pv is symmetric, as the following argument shows: With no vectors 
in .~ besides ~, q, and k, the second-rank tensor 

T ~ f Vq-~([~qk0)[q=o [3 d[~ (49) 

has even parity and depends only on the vector k. Hence by symmetry, T must be of 
the form 

T---- U g ( k 2 ) + k k h ( k  2) (50) 

with U the unit tensor. Thus, T and hence Pv, is symmetric when there are no vec- 
torial internal states. 

For a Boltzmann distribution (Q the internal-state position function), 

f ( r ,  p) -= n exp[ - -p2 /2mkT --  Hmt /kT]  (51) 
(27rmk T)S/2Q 

Pv is just the second-virial-coefficient contribution to the pressure tensor. Thus, it is 
found that 

p - -  k)f2(r, p + k) dp ---- (4rrrnkT)3/eO2 mkT kT  ] (52) 



72 M . W .  Thomas and R. F. Snider 

and consequently 

f 3([3qk0)f~(r, p -- k)f~(r, p + k) dp dk 

_ _  n 2 

(47rmkT)a/2Q~ (f~ + q l f [V~2 I N><K I e-~/krf2+- f2e-~C/kT I k>(k  l f2+V]dk l f~-q> 

17 2 

- -  (4~rmkT)3/.~Q 2 ( ~  -~ q] [Ve-H/~rP~ --  e-H/krP~V] ] ~ --  q> (53) 

where use has been made of the intertwining relation, Eq. (14), and the fact that 
Qf2* = Pc is the projection onto the unbound states of the total relative Hamiltonian 
H. Finally, the equilibrium Pv reduces to 

2n~h a 
tq  tr2 f Vq(<13 § q ] r)<r' ] [3 -- q))lq=o ~ d13 (r ] Ve-~I/krPc 

--  e-H/krPcVi r'> dr' dr 

2nZh 3 
- -  (4~mkT)3/2Q2 trl tr2 f (r + r')[Vr 3 ( r -  r ' ) ] [V(r) -  V(r')]<r I e-H/krPo It'> dr dr' 

--4n2h ~ 
- -  (4rrmkT)3/2Q ~ trl tr2 f rVrV<r ] e-l~/krP~ I r> dr 

n 2 h  3 

= --  2(rrrnkT)a/2Q2 Trrel r(VrV) e-H/krPc (54) 

where the trace Trrel is over relative translational coordinates and also over the inter- 
nal states of the molecules. If  there are no bound states, Pc = 1, and if there are no 
internal states, Pvis isotropic, Pv = Pv U, so that Pv can be identified as n2kTB, where 
B is the second virial coefficient. However, even in equilibrium, if Hint is parameterized 
by an external polar vector (for example, the electric field), then P v will, in general, not 
be isotropic. Furthermore, if there are bound states, Pv eq listed above is only the con- 
tinuum contribution to the second virial coefficient. 

The remaining term of Eq. (46), O12(pv0), is easily shown to be zero as follows: By 
definition, this quantity is given by 

~12(pVo) : 2h 3 trl tr2 f pV~(130kx)l~=o �9 (f2+ Vf~_ -- .A_ Vf2+) dk d[3 dp 

e~ X = --2h 3 trl tr2 f [~V,:a(l~0k )1~.=o dl3- [f~(r, p + k) Vf~(r, p -- k) 

-- A(r, p -- k) Vf2(r, p + k)] dk dp (55) 

where p has been translated by [~ and Eq. (26) used where applicable. It is now shown 
that the [~ integral is symmetric to particle interchange, and since the remaining term 
f2 Vfl - - J [  Vf2 is odd to this transformation (k changes sign), integration over k and 
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tracing over internal states causes the term to vanish. Now, by changes of variable, it 
is seen that 

f = f 
= Pin* ( 13V~...~([30 - -  kx)l,,= o d~ Pint (56) 

d 

where Eq. (34) has been used for the last equality. This shows that this quantity is even 
in k (with simultaneous particle exchange) and the vanishing of ~12(pv0) follows. 
Momentum conservation is thus assured since 

p Dvo/Dt = --V �9 P (57) 

with 

P----- P x +  Pv (58) 

4.2. Energy Balance 

The equation of change for kinetic (more correctly, one-particle) energy is 
obtained from the generalized Boltzmann equation. As might be expected, there is a 
hydrodynamic source term, namely ~/~ =/= 0, in 

p DEK/Dt  = - - V  �9 q -]- c~ x (59) 

where 

pElt(r) ~ trl f [(p2/2m) + Hind.fl(r, p) dp (6o) 

The reason for this is, of course, that the total energy, kinetic plus potential, is con- 
served rather than the kinetic energy by itself. It is shown that a consistent approxima- 
tion can be made in evaluating the potential-energy density (r 1 is the position operator 
of particle 1, which is to be contrasted with the macroscopic position parameter r): 

so that 

with 

pEr(r) = 1 Tri Tr2 3(r -- rl) Vp (2) (61) 

p DEv /Dt  : - - V  �9 q' -}- e v  (62) 

e/c + ev = 0 (63) 

Thus, the conservation of total energy E = EK -}- Ev  is verified. The kinetic energy 
equation is discussed first. 

It is shown in the appendix that, i f f  is diagonal in internal energy, then J0 does 
not contribute to the energy-balance equation. For the W-S equation, then, with 
diagonal in energy f ,  the cr x of Eq. (59) vanishes and "kinetic" energy is conserved. 
This is the case usually assumed when calculating thermal conductivity and vis- 
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cosity. (~4,~5) However, for nondiagonal-in-energy f 's ,  as required to describe high- 
density NMR experiments, (~6) J0 contributes a production term 

~o(pEK) -=- --64iTrZh ~ tr~ tr2 f (k I Y2* VY2 [ k)[Hm, ,f~(p -- k)f2(p -t- k)]_ dp dk (64) 

to aK. J~z contributes to the heat flux so that 

q = q~; + qv  (65) 

with qK arising from the drift terms on the left-hand side of the Boltzmann equation 

qx = trl f ( t-~-- --v0)(~-~-m q- Hin~)fl(r, p)dp (66) 

and a collisional transfer term from Jz~ 

qv : --2ha trl tr2 f (~--m + Hint) Vq.~([~qkO)',=ofa._f2+dk d ,  dp (67) 

The remaining term, 912(pEK), also contributes to the energy production 

f[p~- 

(68) 
and thus, 

~r~c = Oo(pEK) + Oz2(pEx) (69) 

The potential-energy density depends on p(~), or equivalently, could be expressed 
in terms of the pair Wigner distribution function f(% However, since the object here 
is merely to show that aK is canceled by a potential-energy production av and further- 
more, since the operator manipulations are slightly simpler, the equation of change for 
E v is obtained by density-matrix methods and then expressed in terms of the singlet 
Wigner distribution functions. The equation of change for the pair density matrix 
p(~) for a pair of interacting particles is, ignoring triple collisions, 

ih ~p(~)/Ot --- [H (2), p(2)]_ (70) 

From this, the equation for Ev  is 

ih ~pEv/et  = �89 Tq  Tr2[~(r - -  r l )  If, H(2)]_ p(2) 

= �89 Trz Tr2[3(r -- rl) V, K]_ p(~) 

= �88 Trx Tr2[3(r rl), K]_ [p(2) V]+ -- } Trl Try[K, 3(r -- rl)]+ [V, p(2)]_ 

(71) 

where the fact that V commutes with ~(r -- rl) is used as well as the equality 
H (z) = K -k V. The first term in the last expression is of the form of a gradient, and 
so, consistent with the molecular chaos assumption, Eq. (6), this term becomes 

(1/4ih) Trl Tr~[~, K]_ [p(~, V]+ = (--t]8m) V~- Trl Tr2[px, 3(r -- rl)]+ [p(~)V]+ (72) 
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Since pt~ and V are symmetric to particle interchange, the expression [K, 8(r -- r0]+ 
in the last term of Eq. (71) can be replaced by 

[K, 8(r -- rl)]+ = [//1(1), 8(r - rl)] + -+- [H~ 1), 8(r -- rl)]+ 

: [H~ (a), 8(r -- r~)]+ + [//2(1), 8(r -- r2)]+ ,-]- [n~ 1), 8(r -- rl) -- (r -- r2)]+ 

2[H~ I), 8(r -- ra)]+ -- V,- [//1(1), r21 3(r -- r0]+ (73) 

where in the last line ~ designates equivalent contributions to the expectation value 
when the difference between 3-functions has been expanded to keep only linear 
position gradients. The first term of Eq. (73) is a one-particle operator and can thus 
be expressed in terms of 5([~qk• provided the ansatz, Eq. (6), is inserted for p(2). It is 
easily shown that, on dropping quadratic position derivatives, the Weyl correspond- 
ence of �89 (~), 8(r -- ra)]+ is the one-particle energy density in phase space. Thus, 
this contribution to p DEv/Dt just cancels the collision contributions 

~o(DEK ) dr_ ~ll(pEK) + ~12(pEK) to p DEK/Dt, 

that is, on collecting terms, 

 (oEv)/ t - -  v .  qv - v .  18- - Trl  Tr2tPl ,  - -  rl)]+ V]+ 

E --1 Trz Tr~[H~ ~), rzz 3(r -- rl)] + [V, p(2)]_ I 
4ih 

= --V - (q' + pvoEv) + ~v (74) 

In this way, it is clearly seen that ~r v = - - a t ,  while 

q' : ha trz trz f (p --  mVo)[([~ I t [ k ) A _ A + ( k  I-Q*I t~> T~m 

+ (13 [ O [ k)A_f2+(k I t* i 13)] dk df~ dp (75) 

where only the localized collision term is kept in q' since this already appears as a 
gradient in the hydrodynamic equations. Thus, on taking into account the potential 
energy in a manner consistent with the way the collisions were treated, a conservation 
law for total energy is obtained, namely 

p D(E K @ Ev)/Dt = - -V.  (q + q') (76) 

4.3. Angular  M o m e n t u m  

Internal angular momentum (hereafter called spin, although it may arise from 
rotation of a diatomic or polyatomic molecule) is not conserved during collision 
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processes since the translational degress of freedom also carry angular momentum 
about the center of mass of a relative colliding pair. The average spin per unit mass 
of the fluid is denoted by s(r, t) and this is related to f by 

ps = th  f a~A(r, p) dp (77) 

where J is the internal angular momentum operator. The equation of change for s is, 
using Eq. (40), 

p Ds/Dt -- --V �9 (LK + kv) + % (78) 

where 

and 

kx = trz f [(p/m) -- Vo] alfl(r, P) dp 

kv = --2h a tq  tr 2 f JtVq-~([3qkO)]q=ofz_f2§ dk d[~ dp 

~s = e0(ps) + ~12(ps) 

In the appendix, Eq. (A12), it is shown that the W-S collision term gives 

(79) 

(so) 

(81) 

ao(pS) = 2h ~ tr~ tr2 f ~ • Vq-~(~qkO)lq=oA_f~+ dl3 dq dp 

= e :  P v =  e :  P ~ - - 2 P  ~ (82) 

with the identification made with Pv of Eq. (48). Since Pg is symmetric, this can be 
added to Pv. Although the term ~a2(ps) can be identified with a contribution to the 
antisymmetric pressure tensor due to terms of higher order in position gradients--in 
other words, a term quadratic in gradients in the momentum-balance equation--this 
evaluation will not be made here. Suffice it to say at this point that 0x~(ps ) is nonzero 
and does not come from the pressure tensor P in the linear-in-gradients approximate 
localization of the collision term. This point is discussed further in the last section. 
For the complete, linearly extended W-S equation, the equation of change of internal 
angular momentum reads 

p Ds/Dt = --V �9 k -- 2P ~ + ~ (ps )  (83) 

and thus it is seen that the linearly extended W-S equation is not consistent with the 
equations of fluid dynamics. 

5. D I S C U S S I O N  

The equations of change derived from the generalized Boltzmann equation, 
Eq. (8), give equations of conservation type for mass, linear momentum, and angular 
momentum, For energy conservation, this must be supplemented by a contribution 
from the potential energy and if this latter is governed by the pair Liouville equation, 
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Eq. (70), total energy conservation is obtained. This picture is thus consistent with 
all conservation equations. However, in this, the collision term is written in a highly 
nonlocal manner and an equation which reflects (at least partly) the localized nature 
of the collisions is desirable. This is aided by making a Weyl correspondence to a 
Wigner distribution function in the phase space for the translational degrees of free- 
dom, maintaining all the while the operator formalism for internal states. The equiva- 
lent form, Eq. (10), has a collision term, Eq. (12), which includes integrals over the 
positions of the colliding pairs. 

The completely local approximation to this is the Waldmann-Snider collision 
term, Eq. (35). This gives rise to the following set of equations of change: 

ap/St + V -  (pro) = 0 (84) 

p Dvo/Dt = --V �9 PK (85) 

p DEx/Dt  = - -V �9 qx 4- 8o(pEK) (86) 

p Ds/Dt = --V �9 k K -- 2Pv a (87) 

It is immediately seen that the equations for mass and linear momentum are of  con- 
servation type, it being assumed that no external forces or torques are present. I f  f is 
required to be diagonal in internal energy, 8o(pE,:) vanishes and then energy is also 
conserved. However, spin angular momentum is not conserved, which is perfectly 
correct, but the equations are inconsistent in that the spin production term, --2Pv a, is 
related to an antisymmetric part of the pressure tensor which has no analog in the 
momentum equation. To remedy this, deviations from a completely localized collision 
term were considered. Keeping linear-in-gradients contributions to the collision term, 
this linearly extended W-S equation gives a more complete set of equations of 
change--mass balance being the same--the others are 

p Dvo/Dt = - - V .  (P~: + Pv) (88) 

p DEK/Dt = --V �9 (qK 4- qv) 4- aK (89) 

and 

p Ds/Dt = - - V .  (LK + Lv) -- 2Pv a + 812(ps) (90) 

At this stage, energy is not conserved even if f is diagonal in internal energy. This can 
be remedied by adding the equation of change for potential energy, namely 

p DEv/Dt  = --V �9 q' -- crK (91) 

However, the equation of change for spin density still is not consistent with the rest. 
Only by keeping an infinite set of gradients would it be expected that a consistent set 
of  equations be obtained. But this would be equivalent to dealing with the generalized 
Boltzmann equation. 

It is noticed, however, that the linearly extended equation 

8 f  4- p p_. 8 f  + / [Hint , f ] -  = J0 + Jzl + J~2 (92) 
8 t ' m  8r h " 
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has two corrections which differentiate it from the W-S equation. The term Jn  gives 
only collisional transfer contributions to the fluxes, whereas the Jx2 term adds produc- 
tion terms. It is thus suggested that a properly extended W-S equation is 

8 f +  p ~ f + i  [ H i n t , f ] _ = J o + Y n  (93) 
e-7 m ' ~ r  

and this has the consistent set of equations of change 

ep/~t -i- V �9 (pVo) = 0 (94) 

p Dvo/Dt = - -V-  (PK + Pv) (95) 

p DEK/Dt = - -V .  (qK + qv) (96) 

and 
p Ds/Dt = --V �9 (L K + kv) -- 2Pv ~ (97) 

This set of equations is valid provided that f is diagonal in internal energy. If this 
restriction is not met, it is again necessary to add a contribution to take into account 
the rate of change of the potential energy. For consistency, this last equation should 
be truncated to 

p DEv/Dt = - -V .  q' -- Oo(pEic ) (98) 

It is interesting to note that in this approximation there are collisional transfer contri- 
butions to the pressure tensor, heat-flux vector, and angular momentum flux tensor. 
In particular, the gas is nonideal in that it has a second virial coefficient, namely that 
contributed by the unbound pair states. It is also interesting to speculate on the effect 
that the Jn  term would have in solving the Boltzmann equation to obtain transport 
coefficients and spin-relaxation times. Presumably, they may only be density correc- 
tions. However, it is important to start from a consistent set of equations, as has been 
pointed out by Green and Hoffman. ~171 

A P P E N D I X  

8o(pqb ) is evaluated for momentum (~b = v0) , "kinetic" energy (~b = E~:), and 
spin (~b = s). For the operator-phase function ~(p), 80(pq ~) is given by 

8o(pqS) = --64irr3h 2 trz tr2 f r -~([~, 0, k, O)fl_f2 + dk df~ dp (AI) 

The first step in the corresponding classical proof is to symmetrize the integrand to 
particle interchange. Here, this uses Eq. (34), thus 

tra tr2 f r -~(P, 0, k, O)f~_f% dk dp tip 

= tq  tr 2 f r .~(-- p, 0, k, 0)f~_f% dk dp dp 

= trl tr2 f r + 2p) -~(1~, 0, k, O)fLf2+ dk dp @ 

= �89 tq  tr2 f [r + 'k~(P + 2p)] -~(1~, 0, k, O)fLf2+ dk dp @ (A2) 



Boltzmann Equation and  Angular Momentum Conservation 79 

The first equality has used Eq. (34), the effect of Pint ,  and the replacement of - -k  by 
k, while the second equality replaces I~ by --1~ and translates p to p -k 21~. 

For momentum, r = p and the sum Cz + r becomes 

q~l(P) @ r @ 2~) : 2(p + [~) (A3) 

which is just twice the combination of p and I3 that appears in fl_f2+ �9 Consequently, 
if p is replaced by p -- I3, [~ appears only in ..~ and nowhere else. The sum rule, Eq. (26) 
can then be applied to ensure that Oo(pV0) vanishes. 

For energy, r = (p2/2m) + Hint and thus the sum has the form 

p2 (p @ 213)2 
r + r + 213) = ~m + 2m + HL~nt + H~,~nt 

_ S~ ~ (p -t- ~)2 + __ -k H1.int + H2.int (A4) m m 

The (p + I3) 2 term gives a zero contribution for the same reason as discussed for 
momentum, while the remaining term can be recognized as an eigenvalue of K (in 
relative coordinates for translational motion). On recognizing that Eq. (A1) involves 
the quantity 

trl tr2 f ( - ~ -  + H1jnt @ H2,int)-~([30k0)fl(p- k)f2(p + k)d[3 

= f (-~- -P- Hl.int-P- H~.in, , 3(130k0)fl(p- k)f2(p + k)) d13 

: f (~(,0k0)* [ - ~  -t- Hl.int-t- H2. in t ] , f , (p  - -  k)/2(p -t- k))d13 (A5) 

it is necessary to evaluate 

This is explicitly 

f ( k t t ' t  [3) [ ~ -  + Hi,in t + H2.~n~] ([~ I f2, k)  d[3 

= (k[  t*KO-- D*Kt[k)  (A6) 

Now, the operator in this equation can be rewritten in the following form if use is 
made of the intertwining relation, Eq. (14): 

t*Ks -- s = ~ * ( V K -  KV)f2 

= K2t(VH -- HV) f2  = [~Q*Vf2, K]_ (A7) 
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Since the matrix element (A6) is diagonal in translational kinetic energy, this part of 
K drops out, leaving 

~o(pEK) = --32i~v3h 2 tr~ tr2 f (k  [ f2+ V~Q [ k )  

• [Hz.int + H2,~nt ,fa(P -- k)f2(p + k)]_ dp dk (A8) 

This vanishes if f is diagonal in internal energy, but in general this is not the case. 
Lastly, for internal angular momentum, ~ is J, so that, after symmetrization, 

~o(ps) = --32izr~h ~ f (Jz -k J2, -3([~OkO)fLf2+) dk d[3 dp 

= --32i~r3h 2 f (.3([~0k0)* [J1 -~- J~l,fx(P -- k)f2(P + k)) d[3 dk dp (A9) 

Now, conservation of angular momentum means that 

[J1 -t- J2 + L ,  V ] _  = 0 (hl0)  

where L = r • p is the relative translational angular momentum. Thus, 

Jtot ~ Ja + J2 + L 

commutes with K, V, s and also t. Adding L to J1 + J~ before doing the 1~ integral 
in Eq. (A9) gives the result 

f .~(130k0)* [J1 + J2 + L] d[~ 

= f {<k I t + [ 13)[Jz + J~ - ihl 3 • ~/~l 3] <l~ [ Q i k)  

-- (k  l ~7' 113)[Jz -t- J2 -- ihl3 • e/~l~](l~ I t I k)} dl~ 

= (k [ t+JtotD -- ~+Jtott ] k)  = (k  I Jtot[t%Q -- ~+t] ]k)  ----- 0 (All)  

Hence, the W-S production term for internal angular momentum becomes 

~o(pS) = 32~r~h3 tq  tr~ f 1 3 •  [ ( +  ( ~ l t [  k ) ) f f (k  ls [3) 

- -  ( +  ( .  ]f2[ k ) ) f f ( k [ t + l  13)]d13 dkdp  

= 2h 3 trz tr2 f 13 • Vq.3(l~qk0)[,=of~J2+ d[~ dk dp (A12) 

The change from the [~ to the q derivative is accomplished by first utilizing 
the reality of bo(pS) to symmetrize between the first expression of Eq. (A12) and 
its adjoint, with a subsequent identification of the combination of f~ derivatives with 
a q derivative of .3(13qk0). Here, f f i s  short for fl(p -- k)f2(p + k). 
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